Service Manual
for the following products

<table>
<thead>
<tr>
<th>Family</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke applicator</td>
<td>4014...-200</td>
</tr>
<tr>
<td></td>
<td>4014...-300</td>
</tr>
<tr>
<td></td>
<td>4014...-400</td>
</tr>
<tr>
<td></td>
<td>4016...-200</td>
</tr>
<tr>
<td></td>
<td>4016...-300</td>
</tr>
<tr>
<td></td>
<td>4016...-400</td>
</tr>
</tbody>
</table>

Edition: 10/2018 - Part No. 9009194

Copyright
This documentation as well as translation hereof are property of cab Produkttechnik GmbH & Co. KG.

The replication, conversion, duplication or divulgement of the whole manual or parts of it for other intentions than its original intended purpose demand the previous written authorization by cab.

Editor
Regarding questions or comments please contact cab Produkttechnik GmbH & Co. KG.

Topicality
Due to the constant further development of our products discrepancies between documentation and product can occur. Please check www.cab.de for the latest update.

Terms and conditions
Deliveries and performances are effected under the General conditions of sale of cab.

Germany
cab Produkttechnik
GmbH & Co KG
Postfach 1904
D-76007 Karlsruhe
Wilhelm-Schickard-Str. 14
D-76131 Karlsruhe
Telefon +49 721 6626-0
Telefax +49 721 6626-249
www.cab.de
info@cab.de

France
cab technologies s.a.r.l.
F-67350 Niedermodern
Téléphone +33 388 722 501
www.cab.de/fr
info.fr@cab.de

USA
cab Technology Inc.
Tyngsboro MA, 01879
Phone +1 978 649 0293
www.cab.de/us
info.us@cab.de

Asia 亚洲
cab Technology Co., Ltd.
希爱比科技股份有限公司
Junghe, Taipei, Taiwan
Phone +886 2 8227 3966
www.cab.de/tw
info.asia@cab.de

China 中国
cab (Shanghai)Trading Co., Ltd.
乾特(上海)贸易有限公司
Phone +86 21 6236-3161
www.cab.de/cn
info.cn@cab.de

Representatives in other countries on request
Table of Contents

1 **Introduction** ... 5
 1.1 Instructions.. 5
 1.2 Intended Use.. 5
 1.3 Safety Instructions.. 5
 1.4 Safety Markings ... 6
 1.5 Environment ... 6

2 **Product Description** ... 7
 2.1 Important Features.. 7
 2.2 Technical Data... 7
 2.3 Overview without Cover.. 8
 2.4 Contents of Delivery... 10
 2.5 Pads .. 11
 2.5.1 Universal Pads .. 11
 2.5.2 Roll-on Pad 4100 .. 11
 2.5.3 Blow Pad 4014L/R-21xx .. 11
 2.5.4 Corner-wrap Pad 4014L/R-5100 .. 11

3 **Operation** ... 12
 3.1 Standard Operation... 12
 3.2 Cleaning ... 12

4 **Error Messages** ... 14
 4.1 Error Messages of the Printer.. 14
 4.2 Error Messages of the Applicator ... 14

5 **Installation** .. 15
 5.1 Factory default Settings.. 15
 5.2 Tools... 16
 5.3 Mounting and Dismounting the Cover ... 16
 5.4 Mounting the Applicator to the Printer... 17
 5.5 Transportation Lock .. 17
 5.6 Mounting the Pad ... 18
 5.7 Piercing the Universal Pad Sliding Foil .. 18
 5.8 Preparing the Applicator for the Spring Mounted Pad 401x-4x00.. 19
 5.9 Mounting the Blow Tube .. 19
 5.10 Compressed Air Connection .. 20

6 **Adjustments** .. 21
 6.1 Pad Adjustments ... 21
 6.2 Vacuum Adjustments ... 22
 6.3 Adjusting the Blow Tube (Supporting Air) ... 23
 6.4 Adjustment of the Stopper for Blow on Mode .. 25
 6.5 Lifting Speed of Cylinder Z ... 26
 6.6 Sensors on Cylinder Z ... 27
 6.7 End Position Cushioning .. 28
 6.8 Adjusting the Options for Z-Direction Movement ... 28
 6.9 Labeling from below - Changing the Spring of the Impact Sensor ... 29

7 **Configuration** .. 30
 7.1 Method for Changing the Printer Setup .. 30
 7.2 Quick Mode for Setting the Delay Times ... 30
 7.3 Configuration Parameters of the Applicator.. 31
 7.4 Setting the Peel Position .. 32
 7.5 Activation of Peel-off Mode ... 32

8 **Test Operation** .. 33
 8.1 Test Mode without a Print Job .. 33
 8.2 Test Mode with Print Job .. 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Spare Parts</td>
<td>34</td>
</tr>
<tr>
<td>9.1</td>
<td>Retainer Assembly</td>
<td>34</td>
</tr>
<tr>
<td>9.2</td>
<td>Pneumatics Retainer Assembly</td>
<td>35</td>
</tr>
<tr>
<td>9.3</td>
<td>Electronics Retainer Assembly</td>
<td>36</td>
</tr>
<tr>
<td>9.4</td>
<td>Guiding Cylinder Assembly 200/300</td>
<td>37</td>
</tr>
<tr>
<td>9.5</td>
<td>Guiding Cylinder Assembly 400</td>
<td>38</td>
</tr>
<tr>
<td>9.6</td>
<td>Cylinder Assembly Z 200/300</td>
<td>39</td>
</tr>
<tr>
<td>9.7</td>
<td>Cylinder Assembly Z 400</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Drawings</td>
<td>41</td>
</tr>
<tr>
<td>10.1</td>
<td>Block Diagram Type 4014/4016</td>
<td>41</td>
</tr>
<tr>
<td>10.2</td>
<td>Pneumatic Drawing Type 4014/4016</td>
<td>42</td>
</tr>
<tr>
<td>10.3</td>
<td>Label Position Type 4014 L/4016 L</td>
<td>43</td>
</tr>
<tr>
<td>10.4</td>
<td>Label Position Type 4014 R/4016 R</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>Index</td>
<td>45</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Instructions

Important information and instructions in this documentation are designated as follows:

Danger!
Draws attention to an exceptionally great, imminent danger to your health or life due to hazardous voltages.

Danger!
Draws attention to a danger with high risk which, if not avoided, may result in death or serious injury.

Warning!
Draws attention to a danger with medium risk which, if not avoided, may result in death or serious injury.

Caution!
Draws attention to a danger with low risk which, if not avoided, may result in minor or moderate injury.

Attention!
Draws attention to potential risks of property damage or loss of quality.

Note!
Advice to make work routine easier or on important steps to be carried out.

Environment!
Gives you tips on protecting the environment.

Handling instruction
Reference to section, position, illustration number or document.
Option (accessories, peripheral equipment, special fittings).

Time
Information in the display.

1.2 Intended Use

• The device is manufactured in accordance with the current technological status and the recognized safety rules. However, danger to life and limb of the user or third parties and/or damage to the device and other tangible assets can arise during use.
• The device may only be used for its intended purpose and if it is in perfect working order, and it must be used with regard to safety and dangers as stated in the operating manual.
• The device applicator mounted on a cab printer of the Hermes+ series is intended exclusively for applying suitable materials that have been approved by the manufacturer. Any other use or use going beyond this shall be regarded as improper use. The manufacturer/supplier shall not be liable for damage resulting from unauthorized use; the user shall bear the risk alone.
• Usage for the intended purpose also includes complying with the operating manual, including the manufacturer’s maintenance recommendations and specifications.

Note!
The complete and current version of the documentation can be found in the Internet.

1.3 Safety Instructions

Attention!
Initiation, adjustments and changing of parts are to be performed by qualified service personnel only.

Warning!
This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.
Introduction

- Before mounting the delivered components disconnect the printer from the power supply and close the shutoff valve of the applicator.
- Only connect the device to other devices which have a protective low voltage.
- Switch off all affected devices (computer, printer, accessories) before connecting or disconnecting.
- In operation, moving parts are easily accessible.
 This applies especially for the zone, where the pad is moved between the starting and the labelling position.
 During operation do not reach into that zone and keep long hair, loose clothes, and jewelry away. Before any alterations are undertaken in those areas, close the compressed air shutoff valve.
- The device may only be used in a dry environment, do not expose it to moisture (water splashes, sprays and mist)
- Do not use the device in an explosive atmosphere.
- Do not use the device close to high-voltage power lines.
- Perform only those actions described in this service manual.
 Work going beyond this may only be performed by trained personnel or service technicians.
- Unauthorized interference with electronic modules or their software can cause malfunctions.
- Other unauthorized work on, or modifications to the device can also endanger operational safety.
- Always have service work done by a qualified workshop, where the personnel have the technical knowledge and tools required to do the necessary work.
- There are various warning stickers on the device. They draw your attention to danger. Warning stickers may therefore not be removed.

1.4 Safety Markings

1: Risk of injury by moving parts!

2: The cylinder is under pressure also if the printer is switched off. Possibility of residual energy!

3: Danger of crushing hands and fingers by the moving pad!

Attention!
Never remove or cover safety markings!
Replace it in case of damage!

1.5 Environment

Obsolete devices contain valuable recyclable materials that should be sent for recycling.
- Send to suitable collection points, separately from residual waste.
 The modular construction of the print module enables it to be easily disassembled into its component parts.
- Send the parts for recycling.
2 Product Description

2.1 Important Features

- The supporting air and the vacuum as well as the speed of the cylinder are adjustable. That way the applicator can be adapted to different label materials and sizes.
- To avoid contamination within the vacuum channels they are cleaned by air pressure pulses at the end of each application.
- For operation within a system the I/O interface of the printer can be used.

2.2 Technical Data

<table>
<thead>
<tr>
<th>Label transfer method</th>
<th>Tamp pad</th>
<th>Universal pad</th>
<th>Spring loaded tamp pad</th>
<th>Spring loaded universal pad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4014/16 L/R 11F</td>
<td>4014/16 L/R 1100</td>
<td>4014/16 L/R 31F</td>
<td>4014/16 L/R 3100</td>
</tr>
<tr>
<td>Label width in mm for Hermes+4</td>
<td>20 - 114</td>
<td>75 - 90</td>
<td>80 - 114</td>
<td>116 /116</td>
</tr>
<tr>
<td>for Hermes+6</td>
<td>50 - 174</td>
<td>-</td>
<td>80 - 174</td>
<td>-</td>
</tr>
<tr>
<td>Label height in mm</td>
<td>20 - 210</td>
<td>60 - 90</td>
<td>80 - 210</td>
<td>102/152</td>
</tr>
<tr>
<td>Compressed air pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound pressure level</td>
<td>under 74 dB(A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product during labeling</td>
<td>fixed</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>in motion</td>
<td>-</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Labeling onto the product</td>
<td>from the top</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>from below</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>sideways</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Product height</td>
<td>variable</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Product distance to lower edge at cylinder stroke</td>
<td>200 mm up to mm</td>
<td>135</td>
<td>135</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>300 mm up to mm</td>
<td>235</td>
<td>235</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>400 mm up to mm</td>
<td>335</td>
<td>335</td>
<td>330</td>
</tr>
<tr>
<td>Immersion depth pad F(2) up to mm</td>
<td>120</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Cycle time about frequency/min.(1)</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label transfer method</th>
<th>Blow pad</th>
<th>Roll-on pad</th>
<th>Corner pad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4014/16 L/R 2100</td>
<td>4014/16 L/R 4100</td>
<td>4014/16 L/R 5100</td>
</tr>
<tr>
<td>Label width in mm for Hermes+4</td>
<td>20 - 114</td>
<td>25 - 114</td>
<td>20 - 114</td>
</tr>
<tr>
<td>for Hermes+6</td>
<td>- 50 - 174</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Label height in mm</td>
<td>20 - 100</td>
<td>80 - 250</td>
<td>60 - 210</td>
</tr>
<tr>
<td>Compressed air pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound pressure level</td>
<td>under 74 dB(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product during labeling</td>
<td>fixed</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>in motion</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Labeling onto the product</td>
<td>from the top</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>from below</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td></td>
<td>sideways</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Product height</td>
<td>variable</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Product distance to lower edge at cylinder stroke</td>
<td>200 mm up to mm</td>
<td>140</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>300 mm up to mm</td>
<td>240</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>400 mm up to mm</td>
<td>340</td>
<td>360</td>
</tr>
<tr>
<td>Cycle time about frequency/min.(1)</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1 Technical Data

1) Determined at 100 mm stroke below device / smallest label height / print speed 100 mm/s.
2) Immersion depth at applicator >25 mm, the cover of the Hermes+ must be modified.
3) Depending on label height and division
2.3 Overview without Cover

Fig. 2 Overview - Front View

1. Throttle valve cylinder - move in Z-direction
2. Stopper for the operation mode "Blow on", transport lock
3. Knurled screw for attaching the applicator on the printer
4. Setting screw to adjust the angle between applicator and printer
5. Compressed air connector
6. Shutoff valve
7. Setting screw for vertical adjustment cylinder assembly
8. Throttle valve cylinder - move out Z-direction
9. Screw to fix the vertical pad position
10. Pad (customized)
11. Blow tube for supporting air
12. Support air throttle valve
13. Vacuum throttle valve

Fig. 3 Throttle Valve Vaccum and Support Air
Fig. 4 Overview - Rear View

1. Throttle valve cylinder - move in Z-direction
2. Throttle valve cylinder - move out Z-direction
3. Sensor "Start Position"
4. Locking for hinges
5. Interface to the printer
6. Sensor labeling position
7. Pad - customized

Fig. 5 Overview - Control System

19. Valve Cylinder Z
20. Cover plate
21. Valve Blow air
22. Valve Vacuum and Support air
23. PCB Applicator Control
24. PCB Applicator Interfaces
25. Vacuum Generator
2.4 Contents of Delivery

- Applicator (1)
- Screws as part of the pad (2)
- Blow tube - as ordered (3)
- Pad - as ordered (4)
- Pen to make holes (5) (only for universal pads)
- Documentation

Fig. 6 Contents of delivery

Note!
Please keep the original packaging in case the applicator must be returned.

Attention!
The device as well as the printing materials will be damaged by moisture and wetness.
- Set up label printer with applicator only in dry locations protected from moisture and splashes.
2 Product Description

2.5 Pads

2.5.1 Universal Pads

Universal Pad 4014L/R-1100
Standard size: 70x60, 90x90

Spring-mounted Universal Pad 4014L/R-3100
Standard size: 116x102, 116x152

Fig. 7 Universal pad 70x60
Fig. 8 Spring-mounted universal pad 116x152

Universal pads are available in different standard sizes. According to the size of the label the holes may be pierced into the tamp by the customer. For that purpose a piercing pin has been included in the delivery contents. Customized tamp sizes for specific label sizes are available on request.

2.5.2 Roll-on Pad 4100

Fig. 9 Roll-on pad
Roll-on pads are only produced on request and are customized to suit label sizes.

2.5.3 Blow Pad 4014L/R-21xx

Fig. 10 Blow pad
Blow pads are only produced on request and are customized to suit label sizes.

2.5.4 Corner-wrap Pad 4014L/R-5100

Fig. 11 Corner pad
Corner pads are only produced on request and are customized to suit label sizes.
3.1 Standard Operation

- Check all external connections.
- Load the material.
- Open the shutoff valve.

Attention!
- Ensure that the pad is not covered by a label when switching on the printer-applicator system. Otherwise the vacuum sensor may be calibrated incorrectly.

- Switch on the printer.

Note!
If the pad is not in the starting position when the printer is switched on an error message will appear on the display.
Press pause button on the printer.
The applicator will move into the start position and is ready for work.

- Press the feed button on the printer.
 A synchronization feed is initiated. The processed labels have to be removed manually. After a few seconds the printer carries out a short backfeed to position the front edge of the next label at the printing line.

Note!
This synchronization also has to be carried out when the print job has been interrupted with the cancel button. Synchronizing is not necessary when the print head was not lifted between print jobs. This also applies if the printer was powered off between print jobs.

- Start a print job.
- Start the labelling process via PLC interface.
Error messages during labelling process are shown in the display of the printer > Error Messages.

3.2 Cleaning

Attention!
Never use solvents and abrasives.

- Clean the outside surfaces with multi purpose cleaner.
- Remove dust particles and leftover label pieces with a soft brush and/or vacuum cleaner.
- The slide foil (1) requires regular cleaning as most of the dirt will accumulate here.
To clean the applicator and printer it is sometimes necessary to turn away or even dismount the applicator from the printer.

Take care not to adjust the setting screws, throttle valves or other alignment elements. This will enable use of the applicator directly after cleaning.

Pivot Away/Dismount the Applicator

1. Loosen thumbscrew (5) and pivot the applicator aside.
2. Disconnect SUB-D 15 male connector (6) from the female connector (7) of the printer.
3. Loosen screw (4) and remove the locking plate (3) from the hinges.
4. Lift the applicator from the hinges.

Mount the Applicator

5. With the female parts (1) of hinges hang the applicator on the hinges parts (2) of the printer.
6. Connect the SUB-D 15 male connector (6) to the female connector (7) of the printer.
7. To secure the applicator against slipping out of hinges, loosen screw (4), move metal part (3) under the hinge and tighten screw (4).
8. Swing the applicator to the printer and tighten the thumbscrew (5).
4 Error Messages

4.1 Error Messages of the Printer

For detailed information about printer errors (e.g. 'Paper out', 'Ribbon out', etc.) check the operator's manual of the printer.

Error treatment:

► Clearing the error results.
► Press the feed key to synchronize the label feed, remove the left over labels manually.
► Press the pause key to quit the error state.

After error correction, the label causing the error will be reprinted.

4.2 Error Messages of the Applicator

The following table contains an overview of applicator specific error messages and their possible causes. It also suggests methods to resolve the error states:

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pressure ins.</td>
<td>Compressed air is switched off</td>
</tr>
<tr>
<td></td>
<td>Pressure to low < 4 bar</td>
</tr>
<tr>
<td></td>
<td>Pressure to high > 6 bar</td>
</tr>
<tr>
<td>Label not depos.</td>
<td>Label has not been placed onto the product; after the pad has moved back the label is still sticking to the pad.</td>
</tr>
<tr>
<td>Lower position</td>
<td>Pad has not reached the starting position within 2s after the pad has left the labelling position; or pad has left the starting position without authorization.</td>
</tr>
<tr>
<td>Process Error</td>
<td>Process of labeling was interrupted via the I/O interface of the printer with the STP signal.</td>
</tr>
<tr>
<td>Refl. sensor blk.</td>
<td>There has been no change of state of the upper sensor of the cylinder from the start of the labelling process and the signal of the labelling position sensor.</td>
</tr>
<tr>
<td>Upper position</td>
<td>Pad is not in the starting position when the printer was switched on.</td>
</tr>
<tr>
<td></td>
<td>Pad has not reached the labelling position within 2s after the movement of the pad was started.</td>
</tr>
<tr>
<td></td>
<td>Pad has left the printing position without authorization.</td>
</tr>
<tr>
<td>Vac. plate empty</td>
<td>Label has not been picked up properly by the pad; or label fell off the pad before it could be placed onto the product.</td>
</tr>
</tbody>
</table>

Table 2 Error messages of the applicator

Error treatment:

► Clear the error results.
► Press the pause key to quit the error state.

Note!

In the case of errors check the Service Manual for adjustments and settings.

Warning!

After the error has been resolved the pad will immediately move back to the starting position!

Danger of injury to hands and fingers by the moving pad!

► Do not reach into the area of the moving pad and keep long hair, loose clothes, and jewelry away.

After error correction, the printing of the label causing the error cannot be repeated without restarting the print job except the error "Vac. plate empty". In this case, the last label will be printed again after resolution via the pause key and then pressing the Enter button ↓.

► In the application mode "Apply/Print" sends the signal "Print first label" or press the button ↓ to send a printed label to the tamp.
5 Installation

5.1 Factory default Settings

Note!
The applicator is set up in a standard configuration by the factory. These values guarantee a reliable operation.

Note!
In the case of a customer specific setup with special material the settings can deviate from the standard values.
In this case the standard values in the setup protocol are as follows.

The factory default settings are:
- Connected to a cab Hermes+ printer, vertical
- Used Pad: cab part No.: 5963881 54x36 for L
 cab part No.: 5963878 54x36 for R
- Material used for factory default settings: cab part No.: 5556472 54x35.5
- Pressure value of the compressed air: 0.45 MPa (4.5 bar)
5.2 Tools

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Size</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screwdriver with parallel blade</td>
<td>2.5</td>
<td>To adjust the throttle valves and product sensor</td>
</tr>
<tr>
<td>Hexagon key L-wrench</td>
<td>0.8</td>
<td>To adjust the sensors (in contents of delivery)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>For matched norm parts (in contents of delivery)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Pad adjustments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changing pad</td>
</tr>
<tr>
<td>Flat-round nose</td>
<td></td>
<td>To mount/dismount tubes</td>
</tr>
<tr>
<td></td>
<td>straight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>angled</td>
<td></td>
</tr>
<tr>
<td>Open spanner</td>
<td>SW 8</td>
<td>To change the throttle valves</td>
</tr>
<tr>
<td></td>
<td>SW 13</td>
<td>Setting the spring power on the adapter bolt</td>
</tr>
<tr>
<td></td>
<td>SW20</td>
<td>Changing the cylinder</td>
</tr>
<tr>
<td>Manometer</td>
<td>± 7 bar</td>
<td>Air pressure control</td>
</tr>
</tbody>
</table>

Table 3 Tool

5.3 Mounting and Dismounting the Cover

To initiate the applicator or for adjustments it is necessary to dismount the cover (2). After these adjustments have been completed remount the cover.

Warning!
- Do not operate the applicator without cover (2).
- Only dismount the cover when servicing the applicator.

Dismount
1. Loosen screw (3).
2. Lift off cover (2).

Mount
3. Move the cover (2) over the cylinder assembly.
4. Put in the cylinder (1) through the hole in the cover (2).
5. Tighten screw (3) to fasten the cover (2).

Fig. 14 Cover
5 Installation

5.4 Mounting the Applicator to the Printer

Attention!
- Disconnect the printer from the power supply before mounting the applicator!
- Ensure the printer is standing in a stable position!
- Connect the compressed air only after mounting the applicator to the printer!

1. Hang the applicator to the printer via the female hinges (1) to the male hinges (2) of the printer.
2. Connect the SUB-D 15 male connector (6) to the female connector (7) of the printer.
3. To ensure the applicator does not slip out of the hinges, loosen screw (4), move the locking plate (3) to secure the applicator and tighten screw (4) again.
4. When pivoting the applicator onto the printer ensure that the cable is not caught between the two units.
5. Tighten the thumbscrew (5).
6. Raise the stopper on the rail to enable movement of the lifting cylinder.

![Fig. 15 Mounting applicator to the printer](image)

5.5 Transportation Lock

When the applicator is delivered, the stopper (2) is mounted on the rod (1). With this stopper (2) the labelling position for the operation mode "Blow on" can be adjusted. In delivery status the stopper (2) is used as transportation lock.

Note!
To reduce the impact energy it is possible to use a stopper with cushioning (4).

Releasing the transportation lock
1. Loosen screw (3) of the stopper (2).
2. Move the stopper (2) along the rod (1) into the position as in operation mode:
 - Operation mode "Blow on": [7.4 Adjusting the stopper](#)
 - Operation mode "Stamp on": Move the stopper (2) up to the end of the rod (1).
3. Tighten screw (3) to fix the stopper (2) in position.

![Fig. 16 Stopper as transportation lock](image)
5.6 Mounting the Pad

1. Insert the pins (6) of the pad (8) into the holes on the bottom of the pad holder (7).
2. Fix the pad (8) to the pad holder (7) with the screws (1).
3. Insert the vacuum tube (2) and the air blowing tube (3) into their appropriate push-in-fittings (4 & 5) of the pad.

Fig. 17 Mounting the pad

Attention!

To avoid possible collisions of the pad with other parts of the printer-applicator system, please roughly align the pad in all directions (§ 7.1 Pad Adjustments) before connecting the applicator to the compressed air supply!

5.7 Piercing the Universal Pad Sliding Foil

On the bottom of the pad there are holes for holding the labels in place by vacuum. The universal pad is delivered with these holes are covered by a sliding foil and must be punctured according to used the label size. For that purpose a piercing pin is included in the contents of delivery.

Attention!

Danger of stabbing injuries in case of inappropriate use.

1. Place a label (1) on the bottom of the pad (2). Note the position of the slanted edge (3).
2. Align the label so that it protrudes about 2 mm over the slanted edge.
3. Pierce holes into the sliding foil with the piercing pin (4) that are clearly covered by the label as illustrated. Ensure the holes are free of sliding foil by twisting the piercing pin.

Fig. 18 Piercing the sliding foil of the universal pad

Attention!

Do not pierce holes into the sliding foil which are located less than 1 mm from the label's edge as this will compromise the vacuum's efficiency.
5 Installation

5.8 Preparing the Applicator for the Spring Mounted Pad 401x-4x00

Attention!
Ensure the cylinder assembly does not get damaged or cause injury when loosening screws to perform adjustments.

Depending on the type of pad being used the cylinder assembly can be mounted at different heights. When delivered, the pad assembly is mounted in the lowest position as this is suited for most pads. In case of using a larger pad (e.g. 116x102/116x152) with the applicator 4014/4016 it is necessary to change the position of the pads z-direction.

1. Loosen screws (2) and move the pad assembly with the girder (3) along the adapter profile (1) until the screws (5) can be reached.
2. Loosen screws (5).
3. Move pad assembly with adapter profile (1) up one snap point position (4).
4. Fix the cylinder assembly in new position with screws (5).
5. Tighten screws (2).

![Changing the base height of the cylinder unit](image1.png)

5.9 Mounting the Blow Tube

It is possible to rotate the blow tube (4) to optimize the direction of the supporting air for the take over procedure of the label from printer to applicator.

1. Loosen screw (1).
2. Place the blow tube (3) into the blow tube hole B (2).
3. Tighten screw (1) lightly to secure the blow tube (3). >7.3 Blow Tube and Support Air Adjustments
5.10 Compressed Air Connection

Attention!
Adjustments and functionality control were done with a compressed air value of 4.5 bar. The applicator's operating range is between 4.0 and 6.0 bar.

Warning!
When connecting the applicator to compressed air it is considered "IN USE!" Cylinder motion is possible! Do not reach into the zone of the moving pad and keep long hair, loose clothes, and jewelry away.

1. Check that the stop valve (2) is closed as illustrated.
2. Attach compressed air to connector (1).
3. Open the stop valve (2) by turning it into the direction of air flow.
4. Switch on the printer via the power switch.

It is possible to use an air pressure regulation unit.

cab offers two versions of air pressure regulators.
- Air pressure regulation unit with included magnetic valve (3)
- Standard version (4)

Note!
If the pad is not in the starting position when the printer is switched on an error message will appear on the display. Press the pause button on the printer to cancel the error state. The applicator will move into the start position and is ready for work.

Note!
Only mount the air pressure regulation unit as illustrated otherwise the functionality of the air-water separator cannot be guaranteed.
6 Adjustments

6.1 Pad Adjustments

For optimal functionality it is necessary to place the pad exactly over the label for the takeover procedure.

Moving the Pad in X-, Y- and Z-DIRECTIONS

Adjustment in the X-direction - Sideways Adjustment
1. Loosen screw (3).
2. Move the cylinder assembly group (4) including pad along the cross beam until the pad is over the middle of the label intended for application. For better orientation there is a graduation mark (5) depicted on the assembly group.
3. Tighten screw (3).

Adjustment in the Y-direction - Print Direction
1. Loosen screws (1).
2. Move cylinder assembly (4) including pad along the guide rail so that the distance between the edge of the pad (6) and the edge of the dispense plate (7) of the printer is approximately 1 mm.
3. Tighten screws (1).

Adjustment in Z-direction - Height Adjustment
1. Loosen screw (3).
2. Turn setting screw (2) so that the bottom of the pad is 1 mm over the top edge of the dispense plate (7).
3. Tighten screw (3).

Adjusting the Parallelism between Pad and Dispense Edge

The edge of the pad must be parallel to the dispense edge of the printer.

1. Loosen knurled screw (10) and screw (9).
2. Press the applicator against the printer and adjust the angle between applicator pad edge (6) and printer dispensing plate (7) via the setting screw (11) and the eccentric (8).
3. Tighten screw (9) and fasten the applicator with knurled screw (10).
6.2 Vacuum Adjustments

The label will be held on the pad by a vacuum. The vacuum needs to be set up in such a way that the label covers all the suction holes and is not hindered before it reaches its intended position on the pad.

The default Value of the Vacuum is -0.6 bar.

Adjust the vacuum on the throttle valve "vacuum" (1) so that the label will be sucked up over its entire area.

To increase the vacuum turn the setting screw on the throttle valve (1) counterclockwise.

Measuring Point Vacuum (MP V)

Use a manometer with a measurement range of -7 to 7 bar to control the pressure.

MP V : Vacuum - Reference Value (-0.6 bar)

1. Remove cover.
2. Cover the suction plate so it is airtight.
3. Attach manometer between tube (1) of the energy chain and fitting (2) of the pad.
4. Activate the magnetic valve manually by pressing the micro switch (3) to measure the pressure.
5. Mount cover.

Attention!

After pressure measurements, reconnect all components correctly.
6 Adjustments

6.3 Adjusting the Blow Tube (Supporting Air)

The blow tube must be adjusted in such a way that the label takeover is unhindered by turbulence and the supporting air blows the label evenly against the pad.

The default factory value is 2 bar.

Note!
When changing the label size (2", 4" or 6") the appropriate blow tube is to be used.

Fig. 26 Adjust the blow tube

The blow tube (4) for the supporting air can be rotated around its axis. That way the direction of the supporting air can be optimized.

1. Loosen screw (1).

2. Put the blow tube (3) into the tube adapter B (2).
 Turn the blow tube (2) in the direction that the air current can support the take up of the label.
 • For small labels direct the air current more toward the dispensing edge (5) of the printer.
 • For larger labels direct the air current away from the dispense edge (6).
 Use the graduation guide for orientation.

3. Open as many holes of the blow tube as are needed to cover the label width. Remove rings (4) if necessary.
 All holes outside the label width should be covered with the shrink tube rings provided. Once the unneeded holes have been covered the shrink tube should be shrunk.

4. Tighten screw (1).
Adjustments

The strength of the supporting air can be varied via the provided throttle valve (1).

To increase the strength of the supporting air turn the throttle valve (1) counterclockwise.

Measuring Point of the Supporting Air (MP S)

Use a manometer with a measuring range of -7 to 7 bar to measure the pressure.

MP S: Supporting Air (reference value 2 Bar)

1. Dismount cover and connect the manometer to the MP S.
2. Attach manometer between tube (2) and fitting (3).
3. Activate the valve manually by pressing the micro switch (1) to measure the pressure.
4. Mount cover.

Attention!
After pressure measurements, connect all components correctly.
After the pressure has been measured ensure that all connections are properly reestablished.
6 Adjustments

6.4 Adjustment of the Stopper for Blow on Mode

Note!
For operation mode "blow on" only!

The operation mode "Blow on" allows labelling without contact. The pad does not press on the product. The label will be blown from the pad onto the product over a distance of up to 10 mm.

Attention!
- Switch off the printer and close the shutoff valve of the compressed air via the shut-off valve!

![Diagram of the stopper adjustment](image)

1. Place a product sample (7) on the labelling point.
2. Pull the tubes out of the push-in-fittings (3,5).
3. Loosen the screw (2) of the stopper (1).
4. Move the pad manually to the desired labelling position. The distance between the blow pad (6) in the labelling position and the product surface (7) must not exceed 10 mm.
5. Move the stopper (1) against the guide block (4) and tighten the screw (2).
6. Insert the tubes into the appropriate push-in-fittings (3,5).
7. Open the shutoff valve and switch on the printer.

Note!
To reduce the impact energy of the pad it is possible to use a cushioned stopper as illustrated in option (8).

Fig. 29 Adjust the stopper
6.5 Lifting Speed of Cylinder Z

Fig. 30 Throttle valves of the cylinder Z

The speed of the pad movement can be regulated by two throttle valves (1, 3).

- Adjust the pad movement speed as necessary.
- To increase the downward speed turn the screw (4) at the lower valve (3) counterclockwise.
- To increase the upward speed turn the screw (2) of the upper valve (1) counterclockwise.

Note!
The application pressure of the pad is mainly dependent on the downward speed of the pad.
- In order to reduce the application pressure turn screw (4) clockwise.

Attention!
The time for the downward movement of the pad may not exceed 2 seconds otherwise the error message "Lower position" will appear.

Note!
To reduce the air pressure in Z-direction it is possible to use an optional pressure reduction valve (5).
6 Adjustments

6.6 Sensors on Cylinder Z

![Diagram of Sensors on Cylinder Z]

Fig. 31 Sensors on cylinder Z

Sensor Start Position 1

1. Loosen screw (1) of sensor "Start Position" (3) and move the sensor so that the top edge of the sensor sits comfortably in the sensor holder.
2. Remove the compressed air tubes of the cylinder Z and power up the printer with connection to the applicator.
3. Move the pad toward the stopper manually.
4. Loosen screw (2) of the sensor holder.
5. Position the sensor so that it triggers securely, with lit up LED, when cylinder Z is completely contracted. This is achieved with the top edge of the sensor being about 10 mm from the top edge of the connection ring. (Fig. 31)
6. Tighten screw (2).

Labelling Sensor 2

The position of the labelling sensor (6) is dependant on the pad assembly's weight and the mounting position. The spring tension on the adapter bolt is dependant on these parameters and must be adjusted so that the sensor cannot trigger unintentionally. The triggering magnet is integrated in the adapter bolt and changes position with the tension spring.

![Diagram of Labelling Sensor Principle]

Fig. 32 Labelling sensor principle

1. Getting the printer and applicator into the final orientation.
2. Adjust the spring tension on the adapter bolt (4) via the black setting nut so that:
 - The adapter bolt is not pushed into the stamp assembly group during motion.
 - The sensor triggers when the pad has reached the labeling position.
3. Turn the setting nut with an open spanner 13 mm and fix the knurled nut by holding it.
 - Turning the setting nut clockwise will increase the spring tension.
 - Turning the setting nut counterclockwise will decrease the spring tension.
4. Loosen screw (5) and move the sensor (6) so that the LED lights up when the adapter bold is pushed into the pad assembly.
5. Tighten screw (5).
Adjustments

6.7 End Position Cushioning

Note!
The end position cushioning of the cylinder is set up to client specifications and does usually not need to be adjusted.

The end position cushioning of the main cylinder reduces the impact energy when the applicator is operating at high speeds and/or masses.

Adjust the end position cushioning so that the piston arrives at the end position definitively but does not strike it too hard. A higher level of end position cushioning will reduce the lift speed.

- To increase the value of the end position cushioning turn the setting screw (2) clockwise on cylinder (1).
- To reduce the value of the end position cushioning turn the setting screw (2) counterclockwise on cylinder (1).

Fig. 33 End position cushioning

6.8 Adjusting the Options for Z-Direction Movement

The stopper with cushioning (guide rail) reduces the speed of the cylinder Z shortly before impact when the applicator is operated at higher speeds and/or with larger pads.

Adjustments like chapter 7.4 Adjustment of the Stopper for Blow on Mode

Adjust the stopper with maximum compressed spring.

Fig. 34 Stopper with cushioning (guide rail)

The stopper avoids the triggering of the labelling sensor by the weight of the pad assembly during the inward motion of an installation turned 90° or 180°.

The setting occurs during the take-up of the label from the printer.

1. Loosen the counter nut of the stopper.
2. Turn the stopper until it touches the pad retainer lightly. Do not change the take over position of the pad by via stopper.
3. Tighten the counter nut to fix the stopper.

Fig. 35 Stopper (pad assembly)

The pressure reduction valve (2) can be used when labelling pressure-sensitive products or considering general safety aspects to reduce the pressure of the cylinder in the Z-direction.

The standard value is 2.5 bar.

- Connect the manometer between tube and exit (3) and adjust the pressure to 2.5 bar with the knurled screw (1).

It is possible to order an upgraded set with a pressure reduction valve.

Instructions are provided with the upgraded set.

Fig. 36 Pressure reduction valve cylinder Z
6 Adjustments

6.9 Labeling from below - Changing the Spring of the Impact Sensor

For fault free labeling in a sideways- or upward-motion it is necessary to change the spring of the impact sensor. The stronger spring prevents the unwanted triggering of the impact sensor due to the inertia of the cylinder and stamp assembly group.

Fig. 37 Demounting the stamp

- Loosen screw (1) and dismount the stamp (2) to reach the locking washer (6).

Fig. 38 Loosening the adapter bolt

- Push the adapter bolt (3) into the stamp uptake (4) to ensure that the bottom of the bottom of the bolt is pushed out.
- Demount locking plate (6).
- Remove washer (5).

Fig. 39 Changing the spring

- Hold onto the adapter bolt (3) and pull off the stamp uptake (4).
- Pull out the pressure spring (6) and replace it with the alternative.
- Push together the stamp uptake (4) and the adapter bolt (3).
- Replace the washer (5).
- Place the locking washer (6) back into it's position.
The applicator can be operated in different ways. While the original process stays the same, the operation mode can be chosen from the printer setup.

The most important setting is the selection between the operation modes "Stamp on", "Roll on" and "Blow on". Additionally the applicator has different application modes concerning the order of printing and applying within one labelling cycle.

<table>
<thead>
<tr>
<th>Print/Apply</th>
<th>Stamp on</th>
<th>Roll on</th>
<th>Blow on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Apply/Print</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiting position up</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Apply/Print</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiting position down</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4 Operation and application modes
Additionally all operating modes can be adjusted by setting different time delays.

Note!
For more information about the printer configuration and the function of the keys in the navigator pad
Configuration manual of the printer or Operator’s manual of the printer

7.1 Method for Changing the Printer Setup
1. Press menu button.
3. Select and adjust the needed parameters.
4. Return to the "Ready" mode.

7.2 Quick Mode for Setting the Delay Times
Beside the standard method for the printer configuration there is a quick mode to adjust the delay times.

Note!
The quick mode settings can be made during operation. The changes directly affect the current print job.

1. Press the menu button for at least 2 seconds. The first delay time appears on the display.
2. Adjust the delay time by pressing the ↑ button and ↓ button.
3. To switch between the different delay times press the → button.
4. To leave the quick setup mode press the ← button. The selected delay times are stored by the printer.
7 Configuration

7.3 Configuration Parameters of the Applicator

The configuration parameters of the applicator can be found in the menu Setup > Machine param.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicator</td>
<td>Configuration parameters of the applicator</td>
<td></td>
</tr>
<tr>
<td>Mode of oper.</td>
<td>Setting the operation mode Stamp on, Roll on, Blow on Stamp on</td>
<td></td>
</tr>
<tr>
<td>Mode of appl.</td>
<td>Setting the application mode Print-Apply/Apply-Print Print-Apply:</td>
<td>Print-Apply</td>
</tr>
<tr>
<td></td>
<td>An external start signal begins the printing of a label followed by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the application of that label. After the cycle is complete, the pad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>waits in the start position without a label.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apply-Print:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A separate signal starts the printing of the first label and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transfer of that label to the pad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The start signal applies that label and the next label is printed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The cycle ends with a printed label on the pad.</td>
<td></td>
</tr>
<tr>
<td>Waiting position</td>
<td>only for Mode of oper. Blow on and Mode of appl.</td>
<td>up</td>
</tr>
<tr>
<td></td>
<td>Apply-Print:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up: Pad waits in the start position for the start signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>down: Pad waits in the labelling position for the start signal</td>
<td></td>
</tr>
<tr>
<td>Blow time</td>
<td>only for Mode of oper. Blow on</td>
<td>0 ms</td>
</tr>
<tr>
<td>Support delay on</td>
<td>Setting the delay (max. 2.5 s) for the supporting air after printing</td>
<td>0 ms</td>
</tr>
<tr>
<td></td>
<td>start and switching on the supporting air. The delay prevents turbulence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at the front of the label and, consequently, prevents issues when</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the label is being picked up from the printer.</td>
<td></td>
</tr>
<tr>
<td>Support del. off</td>
<td>Setting the switch-off delay (max. 2.5 s) for the supporting air</td>
<td>270 ms</td>
</tr>
<tr>
<td></td>
<td>between the end of label forwarding and switching on the supporting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>air. The delay can be useful to separate the rear end of the label</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from the backing to avoid flaws and to improve the accuracy of label</td>
<td></td>
</tr>
<tr>
<td></td>
<td>positioning.</td>
<td></td>
</tr>
<tr>
<td>Delay time</td>
<td>Delay (max. 2.5 s) between start signal and the start of a labelling</td>
<td>0 ms</td>
</tr>
<tr>
<td></td>
<td>cycle. Allows the use of product sensors within conveyors systems for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>example</td>
<td></td>
</tr>
<tr>
<td>Lock time</td>
<td>All start signals coming in after the first start signal are ignored</td>
<td>0 ms</td>
</tr>
<tr>
<td></td>
<td>when they arrive within the lock time.</td>
<td></td>
</tr>
<tr>
<td>Peel position</td>
<td>Shift the position of the dispensed label relative to the dispensing</td>
<td>0.0 mm</td>
</tr>
<tr>
<td></td>
<td>edge. In the software an extra peel offset value is available. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>offset values from "Peel position" and from software are added</td>
<td></td>
</tr>
<tr>
<td></td>
<td>together for execution.</td>
<td></td>
</tr>
<tr>
<td>Vacuum control</td>
<td>Setting the label transfer check from printer to pad and from pad to</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>product by the vacuum sensor</td>
<td></td>
</tr>
<tr>
<td>Hand-over up</td>
<td>Take over the label directly from the dispensing edge with contact</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>between pad and dispensing edge. Not applicable for Type 4014/4016</td>
<td></td>
</tr>
<tr>
<td>Cleaning blow</td>
<td>Activate/Deactivate - air pressure pulses to clean the pad</td>
<td>On</td>
</tr>
<tr>
<td>Vacuum delay</td>
<td>On - The vacuum will switched on after the end of the label transport.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Off - The vacuum will switched on with the start of the label transport.</td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Applicator parameters
7.4 Setting the Peel Position

To optimize the transfer of the labels from the printer to the pad there are two different parameters available for adjusting the peel position.

Attention!
- First adjust the parameter “Peel Position” in the printer configuration.
- Then adjust the additional peel-off offset in the software.

It is very important to follow that procedure for a certain start after label loading and for the re-start after error treatment.

Parameter “Peel Position” in the printer configuration
- Check the basic settings in the printer setup. Perform labelling cycles by alternately pressing the feed button and Enter button. "9.1 Test Mode without Print Job"
- Adjust the “Peel Position” in such a way, that the blank labels are peeled-off completely from the liner "8.3 Configuration Parameters of the Applicator"

Peel-off offset in the software
- Check the setting in the software. Perform labelling cycles by repeatedly pressing the Enter button. "9.2 Test Mode with Print Job”.
- Adjust the peel-off offset in such a way, that the printed labels are peeled-off completely from the liner Programming manual or software documentation.

7.5 Activation of Peel-off Mode

Note!
- For labelling operation activate the peel-off mode in the software.
- For direct programming use the P command Programming manual.
8 Test Operation

8.1 Test Mode without a Print Job

Warning!
The pad will be moved to the starting position immediately!
Danger of injury to hands and fingers by the moving pad!
Do not reach into the zone of the moving pad and keep long hair, loose clothes, and jewelry away.

Note!
Please use this test mode to adjust the parameter "peel position" in the printer configuration.

The whole labelling process can be simulated without the need of a print job or a connection to a computer by alternately pressing the feed button (2) and the Enter button (1):
- Press the feed button (2).
 A blank label is fed. The vacuum at the pad as well as the supporting air (blow tube) are switched on. After the label has been picked up by the pad, the supporting air is switched off.
- Press the Enter button (1).
 The pad is moved to the labelling position. A sensor signals when the labelling position is reached. The vacuum is switched off and the label is placed onto the product. Then, the pad is moved back into the starting position.

8.2 Test Mode with Print Job

Note!
Please use this test mode to adjust the peel-off offset in the software.

This method allows to check labelling processes with the real print data using the Enter button (1).
- Send a print job.

The test mode is executed in two half cycles:
- Press the Enter button (1).
 Half cycle 1
 A label is printed. The vacuum of the pad as well as the supporting air (blow tube) are switched on. After the label has been picked up by the pad, the supporting air is switched off.
- Press the Enter button (1) again.
 Half cycle 2
 The pad is moved to the labelling position. A sensor signals when the labelling position is reached. The vacuum is switched off and the label is placed onto the product. Then, the pad is moved back into the starting position.
9.1 Retainer Assembly

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No. from to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5902489.001</td>
<td>Screw DIN7984-M4x8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5964129.001</td>
<td>Cover</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5964367.001</td>
<td>Knurled Screw</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5965963.001</td>
<td>Set Screw</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5964544.001</td>
<td>Spring</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>5964036.001</td>
<td>Mounting Plate</td>
<td>1 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>5964185.001</td>
<td>Mounting Plate</td>
<td>1 R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5966530.001</td>
<td>Eccentric</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>5966529.001</td>
<td>Hinges</td>
<td>1 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>5966531.001</td>
<td>Hinges</td>
<td>1 R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5964090.001</td>
<td>Interlock</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5903525.001</td>
<td>E-Ring DIN 6799-4</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>5964428.001</td>
<td>Plate</td>
<td>1 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>5964380.001</td>
<td>Plate</td>
<td>1 R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5902021.001</td>
<td>Screw DIN7991-M3x6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>5964318.001</td>
<td>Adapter Profile</td>
<td>1 A/B/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>5970013.001</td>
<td>Adapter Profile</td>
<td>1 L/C/E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>5970014.001</td>
<td>Adapter Profile</td>
<td>1 R/C/E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5902167.001</td>
<td>Screw DIN912-M5x50</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>5964372.001</td>
<td>Crossbeam</td>
<td>1 A/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>5964331.001</td>
<td>Crossbeam</td>
<td>1 R/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3</td>
<td>5964332.001</td>
<td>Crossbeam</td>
<td>1 A/E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.4</td>
<td>5964333.001</td>
<td>Crossbeam</td>
<td>1 R/E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5964062.001</td>
<td>Binder</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>5964310.001</td>
<td>Clamping Element</td>
<td>1 L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>5964328.001</td>
<td>Clamping Element</td>
<td>1 R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

Fig. 41 Retainer assembly - spare parts
9.2 Pneumatics Retainer Assembly

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No. from</th>
<th>Serial No. to</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5902489.001</td>
<td>Screw DIN7984-M4x8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5902863.001</td>
<td>Screw DIN7984-M4x25</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5905285.001</td>
<td>Push-in L-Connector</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5905284.001</td>
<td>Shut-off valve</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5906842.001</td>
<td>push in/threaded fitting</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5906414.001</td>
<td>Pressure Regulator</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5906469.001</td>
<td>Tube Ø6</td>
<td>2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5906460.001</td>
<td>Tube Ø4</td>
<td>2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5906464.001</td>
<td>Tube Ø6</td>
<td>2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5905972.001</td>
<td>Push-in Y-Fitting</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5906463.001</td>
<td>Tube Ø4</td>
<td>2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5907276.001</td>
<td>Valve Block L</td>
<td>1</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.2</td>
<td>5907274.001</td>
<td>Valve Block R</td>
<td>1</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5907428.001</td>
<td>Magnetic Valve</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5907429.001</td>
<td>Magnetic Valve</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>59056914.001</td>
<td>Push-in L-Connector</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>59056844.001</td>
<td>Vacuum Generator</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5905257.001</td>
<td>Silencer</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>59056915.001</td>
<td>Push-in Y-Connector</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5905263.001</td>
<td>Push-in/threaded Fitting</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.1</td>
<td>5906467.001</td>
<td>Blow Tube 2"</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.2</td>
<td>5906469.001</td>
<td>Blow Tube 4"</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.3</td>
<td>5906465.001</td>
<td>Blow Tube 6"</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

- **L**: \(401 \times 401\)
- **R**: \(401 \times 401\)
- **O**: Option

Fig. 42 Pneumatics retainer assembly - spare parts
9.3 **Electronics Retainer Assembly**

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No. from to</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>5966463.001</td>
<td>Tube Ø4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5955586.001</td>
<td>Cable</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.1</td>
<td>5964590.001</td>
<td>Cable</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>37.2</td>
<td>5964591.001</td>
<td>Cable</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>5964592.001</td>
<td>Cable</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>5902571.001</td>
<td>Screw DIN7984-M4x6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5906943.001</td>
<td>Sealing Ring</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.1</td>
<td>5971416.001</td>
<td>PCB Applicator Interfaces</td>
<td>1</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>41.2</td>
<td>5971417.001</td>
<td>PCB Applicator interfaces</td>
<td>1</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>42.1</td>
<td>5964454.001</td>
<td>Sensor Start Position Cyl.Z</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>42.2</td>
<td>5964494.001</td>
<td>Sensor Start Position Cyl.Z</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>42.3</td>
<td>5964495.001</td>
<td>Sensor Start Position Cyl.Z</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>43.1</td>
<td>5964490.001</td>
<td>Sensor End Position Cyl.Z</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>43.2</td>
<td>5964594.001</td>
<td>Sensor End Position Cyl.Z</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>43.3</td>
<td>5964594.001</td>
<td>Sensor End Position Cyl.Z</td>
<td>1</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>5955576.001</td>
<td>EEPROM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5995575.001</td>
<td>Applicator Control</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>5966417.001</td>
<td>Retainer</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

- L 401x L
- R 401x R
- A 200
- B 300
- C 400
9.4 Guiding Cylinder Assembly 200/300

No. Part-No. Description PU Note Serial No. from to

47.1 5979483.001 Stopper 1 A/B/O
48.1 5979353.001 Stopper 1 A/B
50 5964061.001 Set Screw 1
51.1 5979349.001 Plate 1 L/A/B
51.2 5979417.001 Plate 1 R/A/B
52 5903505.001 E-Ring DIN6799-5 10
53 5902562.001 Screw DIN7984 M4x14 10
54.1 5964301.001 Holder 1 L
54.2 5964336.001 Holder 1 R
55.1 5979331.001 Guide Rail 1 A
55.2 5979342.001 Guide Rail 1 B
56 5521159.001 Nut 1
57.1 5964236.001 Tamp Retainer 1 L
57.2 5964241.001 Tamp Holder 1 R

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.1</td>
<td>5979333.001</td>
<td>Plate</td>
<td>1</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>58.2</td>
<td>5979419.001</td>
<td>Plate</td>
<td>1</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>5964351.001</td>
<td>Stopper</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>5902138.001</td>
<td>Screw DIN912-M5x10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>5979327.001</td>
<td>Adapter Rail</td>
<td>1</td>
<td>A/B</td>
<td></td>
</tr>
<tr>
<td>62.1</td>
<td>5905069.001</td>
<td>Spring</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.2</td>
<td>5905049.001</td>
<td>Spring</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>5521157.001</td>
<td>Washer</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>5521158.001</td>
<td>Washer</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>5903501.001</td>
<td>E-Ring DIN6799-7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>5964311.001</td>
<td>Adapter Bolt</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
- L 401x L
- R 401x R
- A 200
- B 300
- C 400
- O Option
- M1 Appl. top down / horizontal
- M2 Appl. upward

Fig. 44 Guiding cylinder assembly - spare parts
9.5 Guiding Cylinder Assembly 400

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No. from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.1</td>
<td>5964490.001</td>
<td>Sensor End Position Cyl. Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.2</td>
<td>5964584.001</td>
<td>Sensor End Position Cyl. Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.3</td>
<td>5964594.001</td>
<td>Sensor End Position Cyl. Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>5964343.001</td>
<td>Stopper</td>
<td></td>
<td>C/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.2</td>
<td>5964384.001</td>
<td>Stopper</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>5965968.001</td>
<td>Sliding Carriage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5964061.001</td>
<td>Set Screw</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.3</td>
<td>5964302.001</td>
<td>Plate</td>
<td></td>
<td>L/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.4</td>
<td>5964337.001</td>
<td>Plate</td>
<td></td>
<td>R/C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>5903505.001</td>
<td>E-Ring DIN6799-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>590562.001</td>
<td>Screw DIN7984 M4x14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.1</td>
<td>5964301.001</td>
<td>Holder</td>
<td></td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.2</td>
<td>5964336.001</td>
<td>Holder</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No. from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>5521159.001</td>
<td>Nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.1</td>
<td>5964236.001</td>
<td>Tamp Retainer</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2</td>
<td>5964241.001</td>
<td>Tamp Holder</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.3</td>
<td>5964240.001</td>
<td>Plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4</td>
<td>5964244.001</td>
<td>Plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>5964351.001</td>
<td>Stopper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>5902139.001</td>
<td>Screw DIN612-M5x10</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.1</td>
<td>5905069.001</td>
<td>Spring</td>
<td>M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.2</td>
<td>5905049.001</td>
<td>Spring</td>
<td>M2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>5521157.001</td>
<td>Washer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>5521158.001</td>
<td>Washer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>5903601.001</td>
<td>E-Ring DIN6799-7</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>5964311.001</td>
<td>Adapter Bolt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>401x L</td>
</tr>
<tr>
<td>R</td>
<td>401x R</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>300</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
</tr>
<tr>
<td>O</td>
<td>Option</td>
</tr>
<tr>
<td>M1</td>
<td>Appl. nach unten / horizontal</td>
</tr>
<tr>
<td>M2</td>
<td>Appl. nach oben</td>
</tr>
</tbody>
</table>

Fig. 45 Electronics retainer assembly - spare parts
9.6 Cylinder Assembly 200/300

Table: Guiding Cylinder Assembly - Spare Parts

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No. from to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5902489.001</td>
<td>Screw DIN7984-M4x8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5966460.001</td>
<td>Tube Ø4</td>
<td>2m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5966464.001</td>
<td>Tube Ø6</td>
<td>2m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1</td>
<td>5964590.001</td>
<td>Cable</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>38.2</td>
<td>5964591.001</td>
<td>Cable</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>41.1</td>
<td>5964454.001</td>
<td>Sensor Start Position Cyl.Z</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>42.1</td>
<td>5964454.001</td>
<td>Sensor Start Position Cyl.Z</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>67.1</td>
<td>5902047.001</td>
<td>Screw DIN7991-M3x5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.1</td>
<td>5964373.001</td>
<td>Energy Track</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>69.1</td>
<td>5964374.001</td>
<td>Energy Track</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>69.2</td>
<td>5964357.001</td>
<td>Bracket</td>
<td>1</td>
<td>L/A</td>
<td></td>
</tr>
<tr>
<td>69.3</td>
<td>5964396.001</td>
<td>Bracket</td>
<td>1</td>
<td>L/B</td>
<td></td>
</tr>
<tr>
<td>69.4</td>
<td>5964396.001</td>
<td>Bracket</td>
<td>1</td>
<td>R/A</td>
<td></td>
</tr>
<tr>
<td>69.5</td>
<td>5964396.001</td>
<td>Bracket</td>
<td>1</td>
<td>R/B</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>5964443.001</td>
<td>Bolt</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>5964489.001</td>
<td>Knurled Nut</td>
<td>1</td>
<td>B/C</td>
<td></td>
</tr>
<tr>
<td>75.1</td>
<td>5964440.001</td>
<td>Cover</td>
<td>1</td>
<td>L/A</td>
<td></td>
</tr>
<tr>
<td>75.2</td>
<td>5964483.001</td>
<td>Cover</td>
<td>1</td>
<td>L/B</td>
<td></td>
</tr>
<tr>
<td>75.4</td>
<td>5964451.001</td>
<td>Mounting Clip</td>
<td>1</td>
<td>R/A</td>
<td></td>
</tr>
<tr>
<td>75.5</td>
<td>5964453.001</td>
<td>One-way Flow Control Valve</td>
<td>1</td>
<td>R/B</td>
<td></td>
</tr>
<tr>
<td>76.1</td>
<td>5906636.001</td>
<td>Cover</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.1</td>
<td>5906938.001</td>
<td>Cylinder</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>78.2</td>
<td>5905973.001</td>
<td>Cylinder</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>5902837.001</td>
<td>Screw DIN7984-M4x8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.1</td>
<td>5902895.001</td>
<td>Screw DIN7984-M6x30</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram: Guiding cylinder assembly - spare parts

Note:
- **L:** 401x L
- **R:** 401x R
- **A:** 200
- **B:** 300
- **C:** 400
Cylinder Assembly 400

<table>
<thead>
<tr>
<th>No.</th>
<th>Part-No.</th>
<th>Description</th>
<th>PU</th>
<th>Note</th>
<th>Serial No.</th>
<th>Note</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>5966460.001</td>
<td>Tube Ø4</td>
<td></td>
<td></td>
<td>from to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5966454.001</td>
<td>Tube Ø6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.3</td>
<td>5964592.001</td>
<td>Cable</td>
<td>1</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.3</td>
<td>5964495.001</td>
<td>Sensor Start Position Cyl.Z</td>
<td>1</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>5902047.001</td>
<td>Energy Track</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.3</td>
<td>5964379.001</td>
<td>Screw DIN7991-M3x5</td>
<td>1</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.3</td>
<td>5964358.001</td>
<td>Bracket</td>
<td>1</td>
<td>L/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.6</td>
<td>5964402.001</td>
<td>Bracket</td>
<td>1</td>
<td>R/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5902848.001</td>
<td>Screw DIN7991-M4x8</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>5979307.001</td>
<td>Guide Rail</td>
<td>1</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.1</td>
<td>5966524.001</td>
<td>Bracket</td>
<td>1</td>
<td>L/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.2</td>
<td>5966528.001</td>
<td>Bracket</td>
<td>1</td>
<td>R/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>5964489.001</td>
<td>Knurled Nut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.3</td>
<td>5964484.001</td>
<td>Cover</td>
<td>1</td>
<td>L/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.6</td>
<td>5964485.001</td>
<td>Cover</td>
<td>1</td>
<td>R/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>5905593.001</td>
<td>Mounting Clip</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>5906636.001</td>
<td>One-way Flow Control Valve</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78.3</td>
<td>5906117.001</td>
<td>Cylinder</td>
<td>1</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>5902837.001</td>
<td>Screw DIN7984-M4x8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5902895.001</td>
<td>Screw DIN7984-M6x30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>5902837.001</td>
<td>One-way Flow Control Valve</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

- L: 401x L
- R: 401x R
- A: 200
- B: 300
- C: 400
10 Drawings

10.1 Block Diagram Type 4014/4016

Fig. 48 Block diagram 4014/4016
10.2 Pneumatic Drawing Type 4014/4016

Fig. 49 Pneumatics type 4014/4016
10.3 Label Position Type 4014 L/4016 L

Fig. 50 Label position type 4014/4016 L
10.4 Label Position Type 4014 R/4016 R

Fig. 51 Label position type 4014/4016 R
Index

A
Applicator Control 41
Applicator Interfaces 41
B
Block Diagram 41
Blow Mode 25
Blow on .. 30
Blow Tube 19
C
Cleaning ... 12
Controller .. 41
Cover ... 16
Cylinder Assembly
 Guiding (Spare Parts) 37, 38
Cylinder Z .. 26
D
Delay Times 30
F
Features .. 7
G
Geräteübersicht 8
I
Intended use 5
L
Labelling Sensor 27
Label position
 401x L ... 43
 401x R ... 44
Label Position 43
Level of the cylinder unit 19
M
Moving the tamp 21
O
Options .. 26, 28
P
Pad .. 18
Parameters 31
Peel-off Mode 32
Peel position 33
Peel Position 32
Piercing ... 18
Pneumatic drawing 42
Pressure reduction 28
Pressure reduction valve 28
Printer Setup 30
Print Job ... 33
R
Reading Point 22
Roll on .. 30
S
Sensor Start Position 27
Stamp on 30
T
Test Mode 33
Tools ... 16
U
Universal Tamp Pad 18
V
Vacuum ... 22
X
X-direction 21
Y
Y-direction 21
Z
Z-direction 21