

Operating Instructions

Gesellschaft für Computer- und Automations-Bausteine mbH cab-Produkttechnik GmbH Postfach 19 04 D-76007 Karlsruhe Wilhelm-Schickard-Straße 14 D-76131 Karlsruhe Telefon 0721 / 66 26-0 Telefax 0721 / 66 26-249

Copyright by cab / 9008097 / N31 / 10 Angaben zu Lieferumfang, Aussehen, Leistung, Maßen und Gewicht entsprechen unseren Kenntnissen zum Zeitpunkt der Drucklegung. Änderungen sind vorbehalten. All specifications about delivery, design, performance and weight are given to the best of our current knowledge and are subject to change without prior notice.

Table of Contents	
Copyright	2
Table of Contents	
1. Product Description	4
Function	
Technical Data	4
2. Equipment Supplied	5
3. Safety Instructions	
4. Installation	
Installing the External Blow Valve	
Installing the Tamp-Blow Applicator	
Unlocking the Securing Device	
Installation of the Pad Unit	
Installation of the Service Unit	
Connections	12
5. Adjustments	14
5.1. Mechanical Adjustments	14
Swing Path of the Pad	
Adjusting the Level and the Sides of the Cylinder Unit	
Adjusting the Labelling Position	
Tuning of the Blow Tube	
Adjustment of the Blow-On Angle of the Pad	
5.2. Pneumatic Adjustments	
Control Valves Throttle Valves at the Lift Cylinder	
Throttle Valves at the Manifold	ZI
5.3. Selection of the Operation Mode	
Operation Mode 'Printing / Labelling'	
Operation Mode 'Labelling / Printing - Upper Stand-By Position'	
Operation Mode 'Labelling / Printing - Lower Stand-By Position'	
Function of the Pre-Dispense Key	
Setting the Operation Mode and Delay Times	28
Print Info Display	30
6. Operation	31
Appendix A - PLC Interface	
Appendix B - Error Messages	
Appendix C - Function of the LEDs of the Electronics	
Index	
EC-Conformity Declaration	

1. Product Description

Function

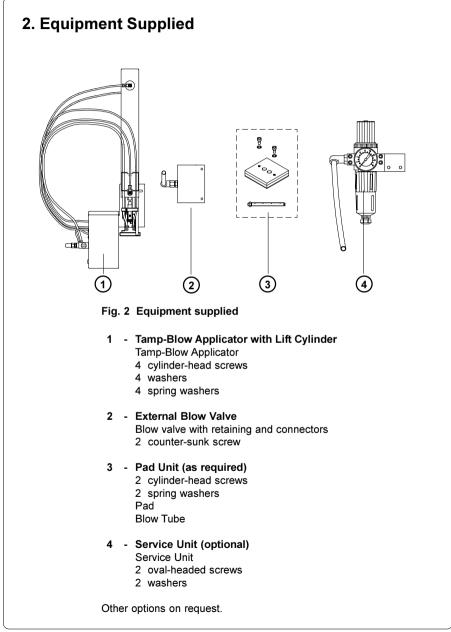
The Tamp-Blow Applicator with Lift Cylinder is an extra device to use with the **Apollo** label printer for automatically applying the printed label onto the product.

The labels are transferred with a pad, which is moved between the two positions, starting position and labelling position, by a compressed-air driven pneumatic cylinder.

In the starting position, the label is picked up from the printer by the vacuum plate of the pad.

A sensor at the cylinder signals when the pad is in the starting position. The label is removed from the silicon liner directly at the dispense edge of the printer. It is sucked on the pad by a vacuum via drillings at the bottom of the pad. For support, the label is also blown against the pad by an air current coming from a blow tube. The correct transfer of the label is controlled by a vacuum sensor.

Next, the pad is moved down into the labelling position, which is confirmed by another sensor (labelling position sensor). Here, the label is blown onto the product by blow air from the pad. While the pad is moving back into the starting position, the vacuum sensor controls whether the label has been removed from the pad.


Specially adapted pads may be used for different label sizes.

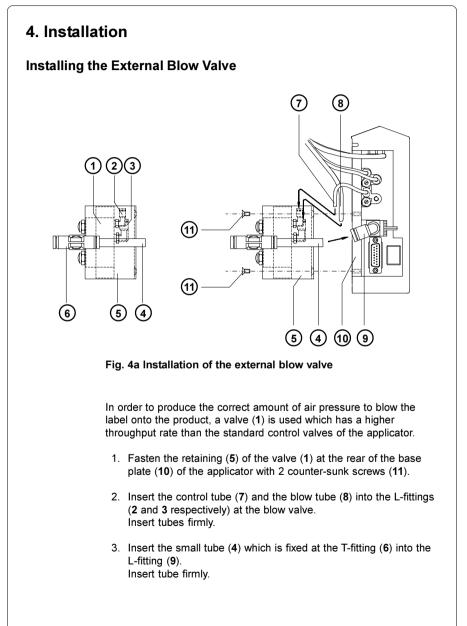
The control unit of the applicator is connected with the **Apollo** on its SPI interface using the peripheral connector of the printer.

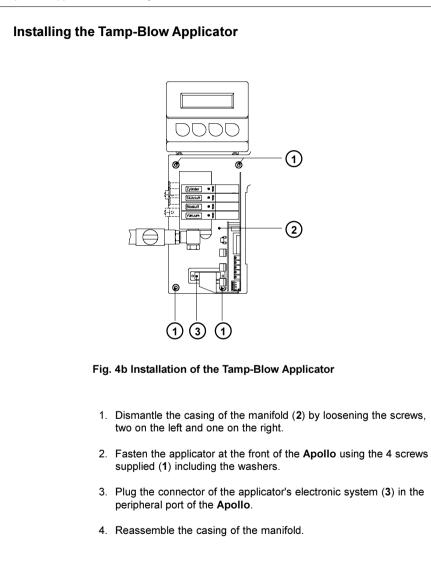
For operation in a networked system the applicator's PLC (programmable logic control) interface with potential free inputs and outputs may be used.

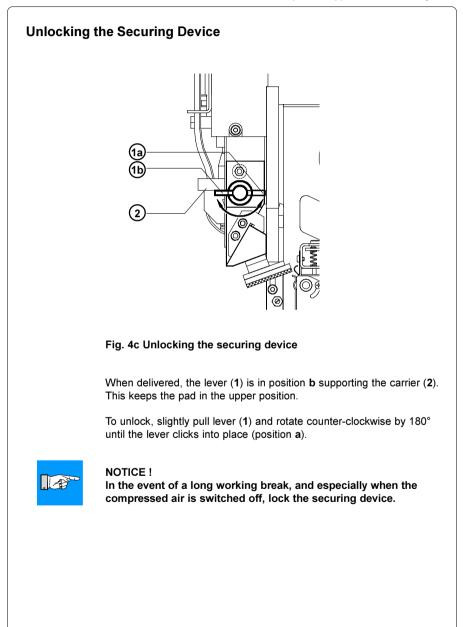
Technical Data

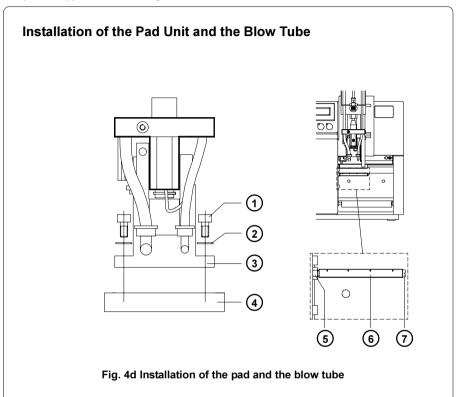
Label width :	.5 to 4.45 in (12 to 116 mm)
Label height :	.2 to 3.2 in (5 to 80 mm)
Air pressure :	4 to 6 bar
Labelling speed :	approx. 20 labels per minute for labels with
	a length of 3.2 in (80 mm)
Lift cylinder :	lift height max. 12 in (300 mm)
	incl. 6 in (150 mm) underneath the
	standing position of the printer

3. Safety Instructions

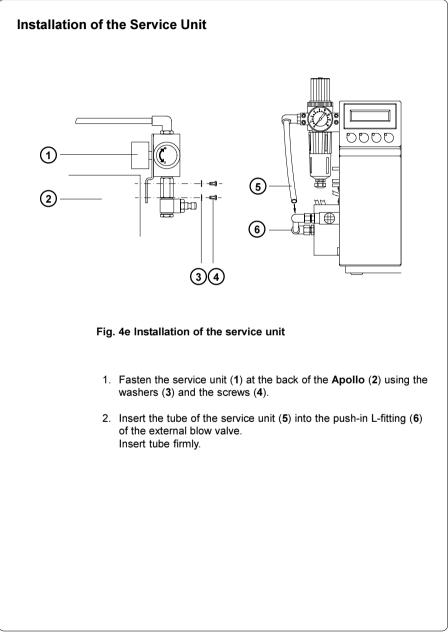

Make sure that the **Apollo** is disconnected from the power supply and the valve at the service unit as well as the shutoff valve at the applicator are closed, while installing the delivered components.

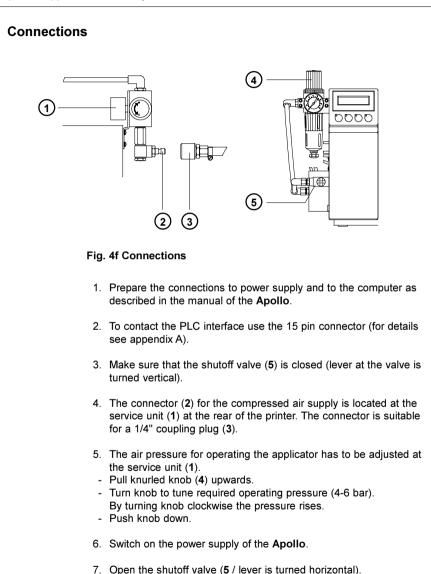



In operation, moving parts are easily accessible. Therefore, keep long hair, loose clothes, and jewelry away. Before any manipulations in those areas, close the shutoff valve.



Do not try to manipulate or repair any parts that are not described in the manuals of the Tamp-Blow Applicator or the **Apollo**.





- 1. Fasten the pad (4) with the washers (2) and the screws (1) at the pad holder (3).
- 2. Screw the blow tube (6) into the pneumatic module.
- 3. Turn the drillings of the tube towards the dispense edge of the printer. Next, hold the slotted screw (7) with a screwdriver and fix the tube by fastening the counter nut (5).

This page is intentionally left blank.

5. Adjustments

All supplied applicators have passed a previous running at the factory. It may be useful to perform some more fine tuning when the applicator is installed. This refers mainly to those parameters, which are significant when using the applicator as part of a networked system as well as pneumatic settings, which have an influence on the application rate.

5.1. Mechanical Adjustments

Swing Path of the Pad

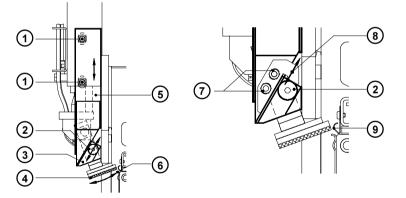


Fig. 5.1a Adjustment of the swing path of the pad

In its upper (starting) position, the pad (4) faces the printer. The swing movement of the pad is caused by a guiding system with a pilot bearing (2) in the curve (3). The swing path and the end position of the pad can be adjusted by shifting the guide rail (5).

- 1. Switch the applicator on.
- 2. Switch the compressed air on.
- 3. Loosen the screws (1).
- 4. Loosen the hexagonal nuts (7).

- Move the guide rail (5) straight up until the rear edge of the pad (10) in its upper (starting) position is located vertically above the dispense edge (6) of the printer. Do not touch the ribbon shield (9). By shifting the guide rail downwards, the pad moves closer to the ribbon shield.
- 6. Tighten the screws (1).

A stud (8) is fixed at the guide rail to avoid the pad swinging too far and, thus, to avoid it beating against the ribbon shield (9), when the applicator moves back.

7. Move the stud (8).

The stud is adjusted correctly if it is possible to push a piece of normal paper between the stud (8) and the bearing (2) while the compressed air is switched on.

8. Tighten the hexagonal nuts (7).

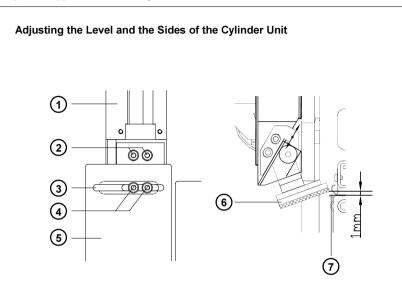


Fig. 5.1b Level adjustment / side adjustment

At the rear of the carrier plate (5) of the applicator there are four screws (2, 4).

- For side adjustment of the cylinder unit (1), loosen the bottom screws (4). The unit can be moved within the longish hole (3). Adjust until the pad is aligned centrally to the dispensed label. Tighten screws (3).
- For level adjustment, loosen the upper screws (2). Move the whole unit until in its upper (starting) position the pad (6) is located slightly above the dispense edge (7) of the Apollo. The distance between the pad and the dispense edge of the Apollo is recommended to be around 1 mm. Tighten screws (2).

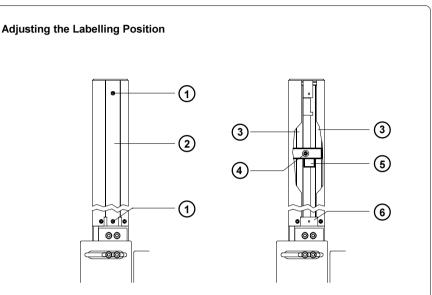


Fig. 5.1c Adjustment of the labelling position

After setting up the applicator, the labelling position (i.e. the lower end position of the pad) needs to be adjusted depending on the height of the products to be labelled.

- 1. Place a product sample at the labelling point.
- 2. Close the shutoff valve for the compressed air.
- 3. Loosen the set screws (1) and dismount the central covering (2) at the back of the cylinder casing.
- Loosen the stop collar set screw (4) enough so that you can move the collar with rubber block (5) along the guide bars (3).
- Unlock the securing device and move the pad manually into the required labelling position (max .8 in/ 20 mm above the product).
- 6. Move the stop collar (5) against the stop block (6) and tighten the set screw (4).
- 7. Reassemble the covering (2).
- 8. Open the shutoff valve.

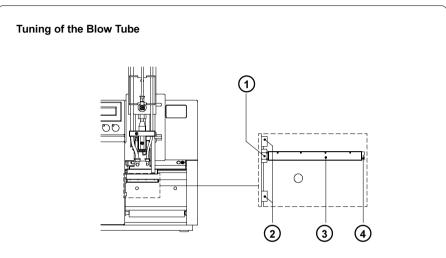
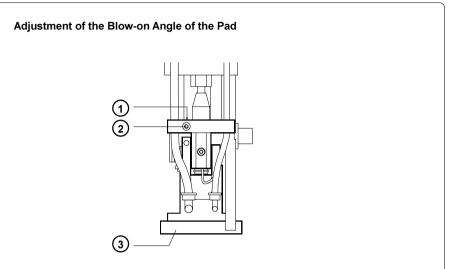



Fig. 5.1d Tuning of the blow tube

The blow tube (3) for the supporting air may be adjusted vertically and also be rotated around its longitudinal axis.

- For vertical adjustment, loosen the two screws (2) and move the tube (3) as required. Tighten screws (2).
- To rotate the blow tube and, consequently, change the direction of the air current, hold slotted screw (4) with a screwdriver while loosening counter nut (1). Adjust the tube until the air current is aligned to the dispense edge of the printer. Tighten counter nut.

The pad has to be adjusted in such a way that the pad (3) is in a horizontal position when it applies the label.

- 1. Close the shutoff valve (pad moves downwards).
- 2. Loosen the securing screw (2).
- Turn the adjusting screw (1) until the pad is horizontal. Turning clockwise swings the pad (3) towards the printer.
- 4. Tighten securing screw (2).
- 5. Open the shutoff valve.

5.2. Pneumatic Adjustments

Control Valves

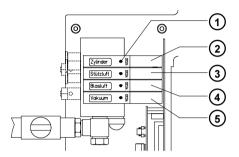


Fig. 5.2a Control valves

To reach the control valves, the casing of the manifold has to be removed. Therefore, loosen the screws at the cover, two on the left and one on the right.

That way, four electric switchable control valves for compressed air become accessible. For manual tuning, the valves may also be operated by integrated keys (1).

The functions of the valves are as explained below.

'Zylinder' (2/ lift cylinder) :

Two-way valve to control the lift cylinder.

When the valve is switched off the pad is kept in the starting position. Switching the valve on will move down the pad into the labelling (stamp) position. Normally the disconnection of the valve is controlled by the signal of the labelling position sensor. When operated manually, there is no controlling by the labelling position sensor. The pad moves to the bottom as far as possible and stays in that position until the key is released.

'Stützluft' (3/ supporting air) : This valve controls the switch-on of the supporting air at the blow tube.

'Blasluft' (4/ blow air) :

This valve controls the external blow valve and, thus, operates the switch-on of the blow air on the pad.

'Vakuum' (5/ vacuum nozzle) :

This valve operates the vacuum nozzle and, consequently, controls the vacuum on the pad for picking-up the label.

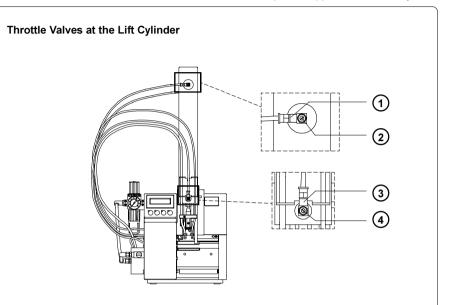


Fig. 5.2b Throttle valves at the lift cylinder

The setting of the lift cylinder may be regulated via two throttle valves (1, 3). Those valves regulate the speed at which the compressed air escapes the two air containers.

The valves are adjustable by turning the throttle screws (2, 4). Turning clockwise will close the valves.

A wider opening of the bottom valve (3) speeds up the pad moving down, a wider opening of the top valve (1) accelerates the upward movement.

Throttle Valves at the Manifold

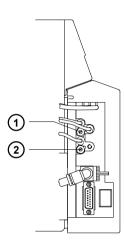


Fig. 5.2c Throttle valves at the manifold

Throttle valve to regulate the supporting air (1)

With this valve the supporting air to blow the label onto the pad can be adjusted.

Turn the throttle screw to adjust the valve. Turning clockwise will close the valve.

The valve has to be tuned in such a way, that the label is blown onto the pad without turning or swinging.

Throttle valve to regulate the vacuum (2)

With this valve the vacuum to suck the label onto the pad can be adjusted.

Turn the throttle screw to adjust the valve. Turning clockwise will close the valve.

The vacuum may be adjusted until the label totally sticks on the vacuum plate.

This page is intentionally left blank.

5.3. Selection of the Operation Mode

The Tamp-Blow Applicator, with its standard components, can be operated in three different ways. While the original process stays the same, the operation mode can be chosen within the control electronics.

The three operation modes differ in the order of labelling and printing within one labelling cycle. A mode can be selected through actuating a DIP switch. The operating modes can be adjusted by setting different time delays.

Furthermore, there is a special function using the pre-dispense key for adjusting, etc.

Operation Mode 'Printing / Labelling'

The print of a label is released by an external start signal (via PLC interface). At the same moment the vacuum on the pad as well as the supporting air from the blow tube are switched on. When the label is printed and picked up from the carrier ribbon, the supporting air is switched off. Then the lift cylinder is driven to move the pad down towards the labelling position. A sensor signals when the labelling position is reached.

Following, the vacuum is switched off and the blow air is switched on briefly through which the label is placed onto the product.

Next, the lift cylinder is driven to move the pad back into the starting position. Thus, the labelling cycle is finished.

Operation Mode 'Labelling / Printing - Upper Stand-By Position'

Before starting the mode 'Labelling / Printing', the printing and picking up of the first label has to be released separately by a special signal (via PLC interface).

The pad with the printed label is in the starting position. The vacuum on the plate is switched on.

By an external start signal, the lift cylinder is driven to move the pad down into the labelling position. The sensor signals when the labelling position is reached. In the following, the vacuum is switched off and the blow air is switched on briefly through which the label is placed onto the product.

Next, the lift cylinder is driven to move the pad back into the starting position. The print of the next label is released. At the same moment, the vacuum on the plate as well as the supporting air are switched on. When the label is printed and completely picked up, the supporting air is switched off. Thus, the labelling cycle is finished.

Operation Mode 'Labelling / Printing - Lower Stand-By Position'

This operation mode differs from the above described mode 'Labelling / Printing - Upper Stand-By Position' in so far as the printed label is immediately moved into the labelling position and is being held there. Consequently, the next cycle begins by blowing the label onto the product.

Function of the Pre-Dispense Key

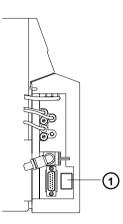


Fig. 5.3a Pre-dispense key

By pressing the pre-dispense key (1), half cycles of the labelling process may alternately be released, provided that there is a current print job.

1(st) half cycle

Pressing the key will release the print of one label. At the same moment the vacuum at the pad as well as the supporting air (blow tube) are switched on. After the label has been printed and picked up by the pad, the supporting air is switched off.

2(nd) half cycle

Pressing the key will drive the lift cylinder to move the pad down into the labelling position. The sensor signals when the labelling position is reached.

Following, the vacuum is switched off and the blow air is switched on briefly through which the label is placed onto the product.

Then, the lift cylinder is driven to move the pad back into the starting position.

If the label is removed from the pad manually after the first half cycle of the labelling process, this half cycle will be repeated when the predispense key is pressed again.

If there is no current print job, only the movements of the pad as described for the second part of the labelling cycle are carried out, when pressing the key.

The first half cycle of the labelling process may also be released by

pressing the $\overset{\square}{\downarrow}$ key on the control panel of the printer. In that case, a blank label is picked up by the pad. That way, the whole labelling

process may be simulated by alternately pressing the $\overset{\frown}{\underbrace{\bullet}}$ key and the pre-dispense key without a current print job or a connection to a computer.

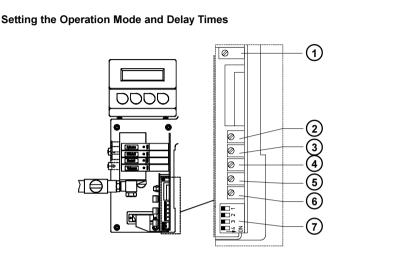


Fig. 5.3b Potentiometers and DIP switches

For best adaptation, the applicator offers several methods to adjust it to the whole system and, therefore, to the required needs. After removing the cover of the manifold, 6 potentiometers as well as 4 DIP switches become accessible by which the parameters can be set.

Potentiometers

Potentiometer 1 is sealed. Certain voltage settings are pre-adjusted from the factory and not to be changed by the user.

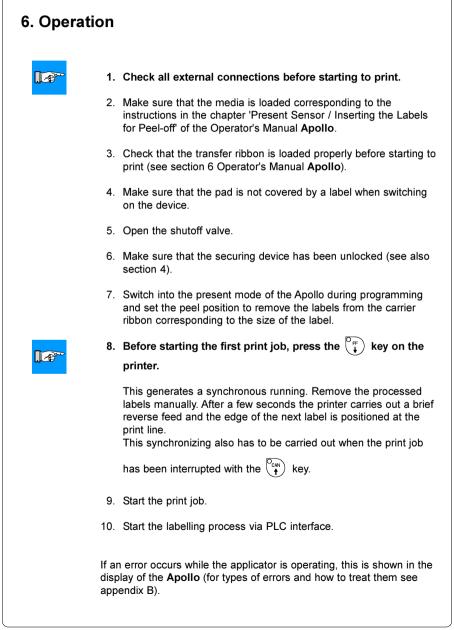
The potentiometers offer the adjustment of the labelling process by changing certain time delays. If any of the settings is changed, the actual value is briefly shown in the printer display.

Potentiometer (2) : t_R - blowing time 0 ... 2.5 s

This potentiometer is used to set the time period of the blow air for the transfer of the label onto the product.

Potentiometer (3) : t_{sA} - switch-off delay supporting air 0 ... 2.5 s

Delayed to the process of the label being picked up, the supporting air is switched off.


In many cases, after being picked up by the pad the label edge may still stick on the silicon liner. This may affect the accuracy of the label positioning or even cause labelling faults. Therefore, switching off the supporting air delayed may be useful to separate the label from the carrier ribbon and place it neatly on the surface of the pad.

Potentiometer (4) : ${\bf s}_{_{\rm SE}}$ - switch-on delay supporting air 08in/20mm
The supporting air from the blow tube is not immediately switched on when the print of the label is released but delayed, when the label has covered a certain distance s_{sE} . This delay helps to prevent a turning or swinging at the front of the label and, consequently, avoids faults when the label is picked up from the printer.
The parameter measures the distance covered by the label before the supporting air is switched on, and does not depend on the print speed. This way, the position of the label may be determined until the air is switched on.
Potentiometer (5) : $t_{_{\rm SP}}$ - locking time 0 2.5 s
All start signals coming in following the first start signal are ignored when they arrive within the locking time $t_{_{\rm SP}}\!.$
Potentiometer (6) : $t_{_{VS}}$ - start delay 0 2.5 s
The parameter t_{vs} determines the time period between the start signal and the start of the labelling process. This delay makes it possible to release the start of the process controlled by a sensor, for instance, when a sensor is located within an assembly line in front of the labelling place.
DIP Switches
Using the DIP switches (7), the operation mode as well as the firmware of the applicator may be altered.

DIP Switch	Parameter	ON	OFF
1	Stand-by position (only if DIP2 is OFF and DIP3 is OFF)	upper position	lower position
2	Applicator	Tamp Applicator	Tamp-Blow Applicator
3	Operation mode	printing / labelling	labelling / printing
4	Saving potentiometer settings	no	yes

automatically stored in the printer when switched on. Therefore, in case the applicator has been changed (e.g. in case of an accident) the settings are still saved and may be transferred to a replacement. (see also section about Print Info Display).

Print Info Display
Apollo offers a convenient option for recalling information about the configuration and hardware problems in the printer info display (see also Operator's Manual of the Apollo / section 11).
First, press the out key to switch from ONLINE mode into OFFLINE
mode. Next, to recall the desired printer information, press the $\mathbf{\hat{f}}$
key to see the first of the five display pages available. Press key repeatedly to view the other pages. When an applicator is installed, this display is extended by another five pages. After the standard pages, the following parameters are shown :
 start delay locking time switch-off delay supporting air blowing time switch-on delay supporting air.
When the reviewing is completed, switch back into ONLINE mode by
pressing the out key.
In case the applicator has been changed (e.g. in case of an accident) the stored parameters can be viewed as described above and the new device can be adjusted accordingly. For that purpose the DIP-switch 4 at the new applicator has to be 'ON' during switching on the device the first time.

This page is intentionally left blank.

Appendix A - PLC Interface

For use in a networked system the applicator is equipped with a PLC interface to start and interrupt the labelling process. It also passes on state information as well as error messages of the applicator to the system control.

The interface has a 15 pin SUB-D connector.

Pin Assignment of the PLC Interface

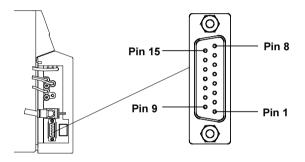
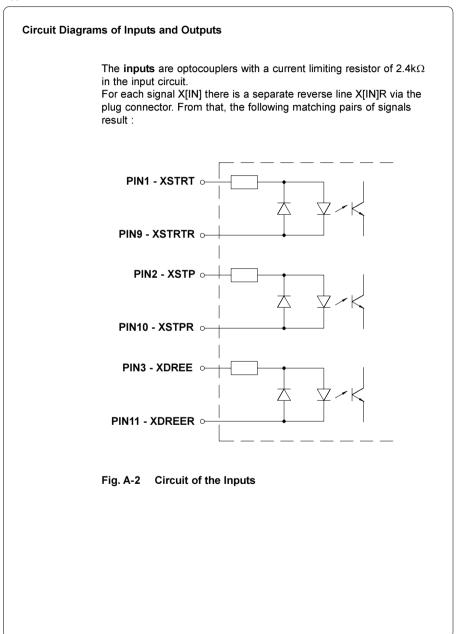
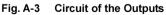
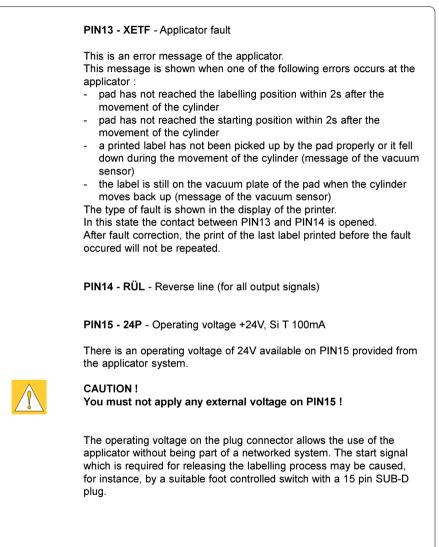
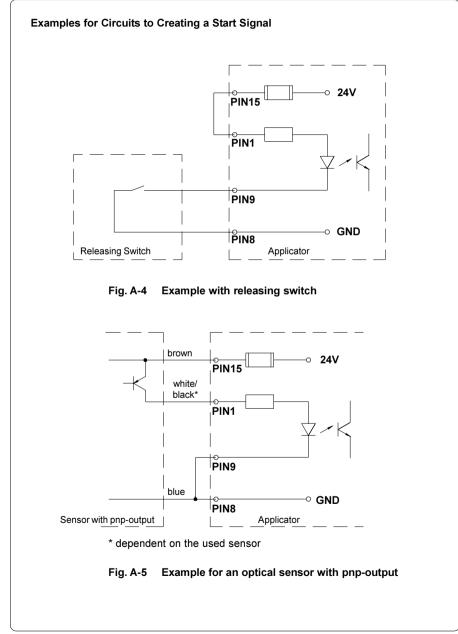




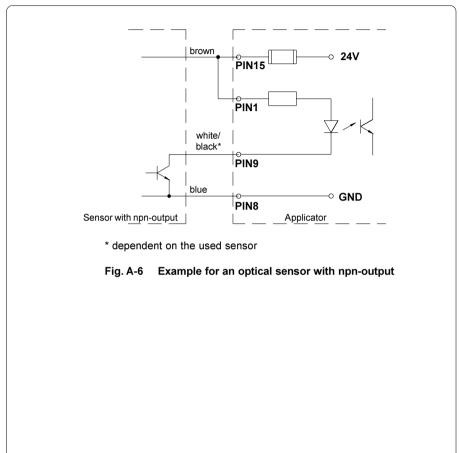
Fig. A-1 Connector of the PLC Interface

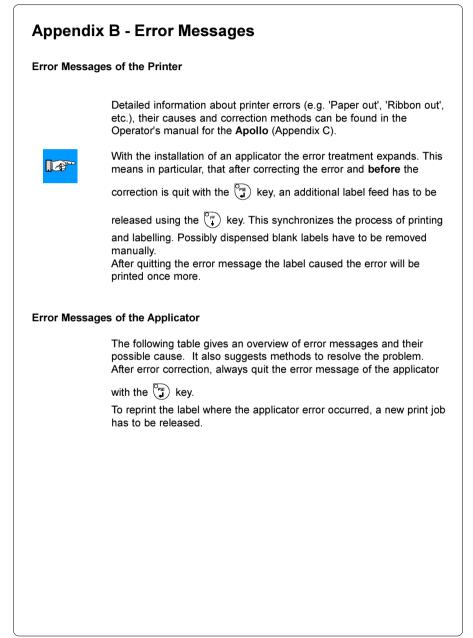
PIN	Signal	Direction	Function	
1	XSTRT	input	start signal	
2	XSTP	input	stop signal	
3	XDREE	input	print first label	
4	XDNB	output	printer not ready	
5	XEDG	output	no existing print job	
6	XSAA	output	general error message	
7	XSOE	output	pad in starting position	
8	GND	output	grounding (0V)	
9	XSTRTR	(input)	start signal (reverse line)	
10	XSTPR	(input)	stop signal (reverse line)	
11	XDREER	(input)	print first label (reverse line)	
12	XSUE	output		
13	XETF	output	applicator fault	
14	RÜL	output	reverse line (for all output signals)	
15	24P	output	operating voltage +24V, Si T 100mA	


All outputs are realized through solid state relays which outputs are connected among one another one-sided. The joint line is lead to the plug connector as RÜL signal. The switch function of the outputs is to open or close the contact between the joint line RÜL and the respective output. Electrical requirements : $U_{max} = 42V$ $I_{max} = 100mA$ • PIN4 - XDNB • PIN5 - XEDG O PIN6 - XSAA • PIN7 - XSOE - PIN12 - XSUE • PIN13 - XETF ○ PIN14 - RÜL

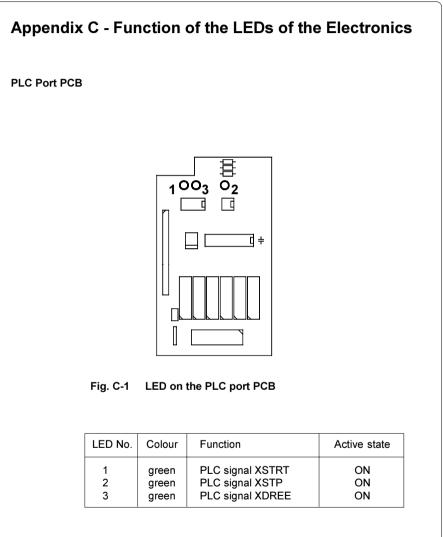


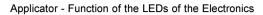
Comments on the Signals PIN1 - XSTRT - Start signal This signal will release the start of the labelling process. It is active when a current flows between PIN1 and PIN9 PIN2 - XSTP - Stop signal The signal is active when a current flows between PIN2 and PIN10. It releases following functions : - to finish the print of a label and its picking-up by the pad - to interrupt or to stop the beginning of the labelling process - to make the pad moving back into the starting position - to command the disregard of all following signals - if the stop signal has been activated during the labelling phase, the display will show the message 'Host stop/ error'. (does not show message during print process) PIN3 - XDREE - Print first label When current flows between PIN3 and PIN11 the print of the first label and its picking-up by the pad is released within the operation mode 'Labelling / Printing'. When the labelling process is started by the XSTRT signal within the operation mode 'Labelling / Printing', the cylinder will start to place the label onto the product at once. Only after that, a new label is printed. Therefore, the provision of the first label has to be assigned by a separate signal. In the 'Printing / Labelling' mode this signal has no function. PIN4 - XDNB - Printer not ready This is an error message of the printer. The details and type of error can be learnt from the printer display. ('Ribbon out'; 'Paper out'; 'No label') In this state the contact between PIN4 and PIN14 is opened. After error correction, the print of the last label will be repeated.


PIN5 - XEDG - No existing print job
State message. There is no print job currently available. In this state the contact between PIN5 and PIN14 is opened.
PIN6 - XSAA - General error message
General error message of both, printer and applicator. This message is shown when one of the two errors either XDNB or XETF occurs. This signal is important in case that only one error signal of the applicator can be analysed from the system control. In this state the contact between PIN6 and PIN14 is opened.
PIN7 - XSOE - Pad in starting position
The signal is active when the pad is in the starting position where it picks up the label from the printer. In this state the contact between PIN7 and PIN14 is opened.
PIN8 - GND - Grounding (0V)
PIN9 - XSTRTR - Reverse line of the start signal XSTRT
PIN10 - XSTPR - Reverse line of the stop signal XSTP
PIN11 - XDREER - Reverse line of the print first label signal XDREE
PIN12 - XSUE - Pad in labelling position
The signal is active when the pad is in its labelling position where the label is removed from the vacuum plate and positioned onto the product.
In this state the contact between PIN12 and PIN14 is opened.


Applicator - PLC Interface

Applicator - PLC Interface





Applicator - Error Messages

Error message	Possible cause	Solution
Label not depos.	Label has not been placed onto the product; after the lift has moved back the label still sticks on the vacuum plate of the pad	Label the product manually
Upper position	Pad has not reached the starting position within 2s after the lift has moved back; or Pad has left the starting position unauthorized	Check the pneumatic adjustments (esp. the upper throttle valve of the cylinder); Label the product manually
Host stop/ error	Labelling process has been interrupted by an XSTP stop signal via PLC interface	Label the product manually if necessary
Refl. sensor blk.	There has been no change of the switch state at the upper control sensor (at the cylinder) between the start of the labelling process and the signal from the labelling position sensor	Check the sensor (service)
Vac. plate empty	Label has not been picked up properly by the pad; or Label fell off the pad before it could be placed onto the product	If possible, place the 'lost' lab onto the product manually; Otherwise stop print job and start again with adapted parameters (e.g. count)
Lower position	Pad has not reached the labelling position within 2s after the movement of the cylinder	Check the pneumatic adjustments (esp. the lower throttle valve of the cylinder); Make sure that the securing device has been unlocked; Check the applicator for heaviness of its mechanics; Check the labelling position sensor (service); Label the product manually

Table B-1 Error messages of the applicator

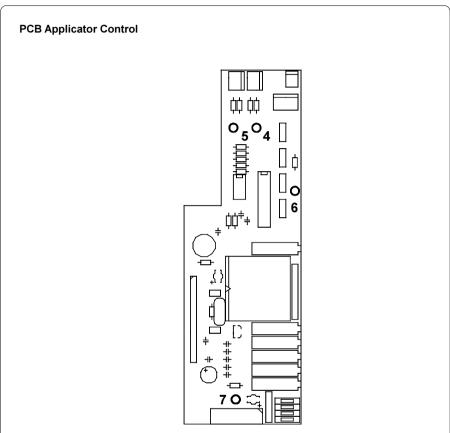


Fig. C-2 LED on the applicator control PCB

LED No.	Colour	Function	Active state
4 5	red red	Labelling position sensor Sensor signals that pad is in starting position	OFF ON
6 7	yellow yellow	Label on the pad Operating voltage 5V	ON ON

Table C-2 LED on the applicator control PCB

Index

Α

Adjustments 14-21 Air pressure 12 Applicator fault A-1ff.

В

Blow air 4, 20, 28 Blow-on angle 19 Blow time 28, 30 Blow valve, external 5, 7, 20 Blow tube 4f., 10, 18, 20, 24f.

С

CAN key (**Apollo**) 31 Casing manifold 8, 20 Compressed air connection 12 Connections 12 Control valves 20 Copyright 2 Cylinder 20f.

D

DIP switch 24, 28f.

Ε

Equipment supplied 5 Error messages B-1f. Error messages applicator B-1f. Error messages printer B-1 Errors 31 External blow valve 5, 7, 20

F

Function 4 FF key (**Apollo**) 27, 31, B-1

G

General error message A-4 Guide rail 14f.

Н

Host stop / error B-2

Installation 7-11

L

Labelling position 4, 17, 20, 24f. Labelling position, adjusting 17 Labelling position sensor 4, C-2 Labelling / printing mode 24, 29 Label not deposited B-2 LED C-1f. Level adjustment 16 Locking time 29f. Lower position B-2

Μ

Manifold 8, 20, 22

Ν

No existing print job A-1ff.

0

ONL key (**Apollo**) 30 Operation 31 Operation modes 24

Ρ

Pad 4f., 10, 14f., 19, 24 Pad holder 10, 14f. Pad in labelling position A-1ff. Pad in starting position A-1ff. Pad unit 5,10 Peripheral port (Apollo) 8 Pilot bearing 14 PLC interface 4, 12, 24, 31, A-1ff Pneumatic cylinder 4 Potentiometer 28f. Pre-dispense key 26f. Printer not ready A-1ff. Print first label A-1ff. Print info display 30 Printing / labelling mode 24, 29 PSE key (Apollo) 30, B-1

R

Ribbon shield (**Apollo**) 14 Reflective sensor blocked B-2

S

Safety instructions 6 Saving potentiometer settings 29 Securing device 9, 31 Service unit 5. 11f. Shutoff valve 12. 31 Side adjustment 16 Signals (PLC) A-1ff., C-1 SPI interface 4 Stand-by position 24, 29 Start delay 29f. Starting position 4, 14, 20, 24f. Start signal A-1ff. Stop signal A-1ff. Stud 14 Supporting air 4, 18, 20, 22ff. Swing path of the pad 14 Switch-on delay supporting air 29f. Switch-off delay supporting air 28, 30

Т

Technical data 4 Throttle valves 21f.

U

Upper (starting) position B-1

V

Vacuum 4, 20, 22ff. Vacuum nozzle 20 Vacuum plate empty B-2 Vacuum sensor 4

EC-Conformity Declaration

Herewith we declare that the following described machine, from the design and style and as we sell it, complies with the relevant EC Safety and Health Requirements. This declaration will lose the validity if there are any changes of the machine or the purpose without our consent.

Description: Applicator

Applied EC Regulations and Norms:

- EC Machinery Regulations
- Machine Safety
- EC Low Voltage Regulations
- Data and Office Machine Safety

- EC Electromagnetic Compatibility Regulations

- Threshold values for the Interference of Data Machines
- Limits for harmonic current emission
- Limits of voltage fluctuation and flicker
- Immunity characteristics-Limits and methods of measurement

Signature for the producer:

cab Produkttechnik Sömmerda Gesellschaft für Computerund Automationsbausteine mbH 99610 Sömmerda

Sömmerda, 01.10.01

Ceremi and

Erwin Fascher Managing Director

Type: Tamp-Blow Applicator with Lift Cylinder

98/37/EU EN 292-2:1991 + A1:1995

73/23/EEC EN 60950:1992 + A1:1993 EN 60950/A2:1993 + A3:1995 + A4:1997

89/336/EEC EN 55022:1998

EN 61000-3-2:1995 + A1:1998 + A2:1998 + A14:2000 EN 61000-3-3:1995 EN 55024:1998